Monday, April 15, 2019

Sarah Sanders Says Congress Is Not "Smart Enough" for Trump's Tax Return...

Notations From the Grid (Weekly Edition): Out & About in Our World As a New Week Dawns....






As a new week begins, we wanted to report on this perspective on the week that was with what Seth Meyers noted.  This is as The US Tresuary Department refused the US House of Representatives request for President Trump's Tax Return.   DC Reports provided some alternative perspective on it:

Trump and his team are now openly declaring that Trump is above the law, a clear step toward a dictatorship. Our David Cay Johnston explains in the first of several pieces examining official lawlessness.


Also, worker deaths from falls are rising at an alarming rate, reporting by Eli Wolfe of FairWarning reveals.

Please read our latest and pass along to others what you learn. 


Counselor to the President joined Meet the Press to provide the Administration's View:  



The Meet the Press shared its' perspective:


This is also Earth Day Week.   As our team will be "kind of dark", we will continue to assess the on going developments as we assess the Immigration Debate, the Mueller Report and the controversy over Attorney General Barr, the continued challenges behind Brexit, the challenges in the Middle East, Elections in India, Australia and Ukraine  and East Africa--including the situation in Sudan.  

It will be an interesting week as our team will have twice a week updates in our Google Corner this week as we look forward to community engagement.




Saturday, April 13, 2019

Notations From the Grid (W-End Edition): On Natural Disasters

We have been reporting on the Iran Floods as we have been witness to unprecedented floods.  We decided to feature this courtesy of Peter Diamandis about the possibilities to be able to be proactive in dealing with disasters: 


Between 2005 and 2014, natural disasters have claimed the lives of over 700,000 people and resulted in total damage of more than US$1.4 trillion.
During the past 50 years, the frequency of recorded natural disasters has surged nearly five-fold.
In this blog, I’ll be exploring how converging exponential technologies (AI, Robotics, Drones, Sensors, Networks) are transforming the future of disaster relief — how we can prevent them in the first place and get help to victims during that first golden hour wherein immediate relief can save lives.
Here are the three areas of greatest impact:
  1. AI, predictive mapping, and the power of the crowd
  2. Next-gen robotics and swarm solutions
  3. Aerial drones and immediate aid supply
Let’s dive in!

Artificial Intelligence and Predictive Mapping 

When it comes to immediate and high-precision emergency response, data is gold
Already, the meteoric rise of space-based networks, stratosphere-hovering balloons, and 5G telecommunications infrastructure is in the process of connecting every last individual on the planet.
Aside from democratizing the world’s information, however, this upsurge in connectivity will soon grant anyone the ability to broadcast detailed geotagged data, particularly those most vulnerable to natural disasters. 
Armed with the power of data broadcasting and the force of the crowd, disaster victims now play a vital role in emergency response, turning a historically one-way blind rescue operation into a two-way dialogue between connected crowds and smart response systems.
With a skyrocketing abundance of data, however, comes a new paradigm: one in which we no longer face a scarcity of answers. Instead, it will be the quality of our questions that matters most. 
This is where AI comes in: our mining mechanism.
In the case of emergency response, what if we could strategically map an almost endless amount of incoming data points? Or predict the dynamics of a flood and identify a tsunami’s most vulnerable targets before it even strikes? Or even amplify critical signals to trigger automatic aid by surveillance drones and immediately alert crowdsourced volunteers? 
Already, a number of key players are leveraging AI, crowdsourced intelligence, and cutting edge visualizations to optimize crisis response and multiply relief speeds.
Take One Concern, for instance.
Born out of Stanford under the mentorship of leading AI expert Andrew Ng, One Concern leverages AI through analytical disaster assessment and calculated damage estimates.
Partnering with the City of Los Angeles, San Francisco, and numerous cities in San Mateo County, the platform assigns verified, unique ‘digital fingerprints’ to every element in a city. Building robust models of each system, One Concern’s AI platform can then monitor site-specific impacts of not only climate change but each individual natural disaster, from sweeping thermal shifts to seismic movement.
This data, combined with that of city infrastructure and former disasters are then used to predict future damage under a range of disaster scenarios, informing prevention methods and structures in need of reinforcement.
Within just four years, One Concern can now make precise predictions with an 85 percent accuracy rate under 15 minutes.
And as IoT-connected devices and intelligent hardware continue to boom, a blooming trillion-sensor economy will only serve to amplify AI’s predictive capacity, offering us immediate, preventive strategies long before disaster strikes.
Beyond natural disasters, however, crowdsourced intelligence, predictive crisis mapping, and AI-powered responses are just as formidable a triage in humanitarian disasters. 
One extraordinary story is that of Ushahidi.
When violence broke out after the 2007 Kenyan elections, one local blogger proposed a simple yet powerful question to the web: “Any techies out there willing to do a mashup of where the violence and destruction is occurring and put it on a map?”
Within days, four ‘techies’ heeded the call, building a platform that crowdsourced first-hand reports via SMS, mined the web for answers, and — with over 40,000 verified reports — sent alerts back to locals on the ground and viewers across the world.
Today, Ushahidi has been used in over 150 countries, reaching a total of 20 million people across 100,000+ deployments. Now an open-source crisis-mapping software, its V3 (or “Ushahidi in the Cloud”) is accessible to anyone, mining millions of Tweets, hundreds of thousands of news articles, and geotagged, time-stamped data from countless sources.
Aggregating one of the longest-running crisis maps to date, Ushahidi’s Syria Tracker has proved invaluable in the crowdsourcing of witness reports. Providing real-time geographic visualizations of all verified data, Syria Tracker has enabled civilians to report everything from missing people and relief supply needs, to civilian casualties and disease outbreaks — all while evading the government’s cell network, keeping identities private, and verifying reports prior to publication.
As mobile connectivity and abundant sensors converge with AI-mined crowd intelligence, real-time awareness will only multiply in speed and scale.
Imagining the Future….
Within the next 10 years, spatial web technology might even allow us to tap into mesh networks. 
As I’ve explored in a previous blog on the implications of the spatial web, while traditional networks rely on a limited set of wired access points (or wireless hotspots), a wireless mesh network can connect entire cities via hundreds of dispersed nodes that communicate with each other and share a network connection non-hierarchically.
In short, this means that individual mobile users can together establish a local mesh network using nothing but the compute power in their own devices.
Take this a step further, and a local population of strangers could collectively broadcast countless 360-degree feeds across a local mesh network. 
Imagine a scenario in which armed attacks break out across disjointed urban districts, each cluster of eye witnesses and at-risk civilians broadcasting an aggregate of 360-degree videos, all fed through photogrammetry AIs that build out a live hologram in real time, giving family members and first responders complete information.
Or take a coastal community in the throes of torrential rainfall and failing infrastructure. Now empowered by a collective live feed, verification of data reports takes a matter of seconds, and richly layered data informs first responders and AI platforms with unbelievable accuracy and specificity of relief needs.
By linking all the right technological pieces, we might even see the rise of automated drone deliveries. Imagine: crowdsourced intelligence is first cross-referenced with sensor data and verified algorithmically. AI is then leveraged to determine the specific needs and degree of urgency at ultra-precise coordinates. Within minutes, once approved by personnel, swarm robots rush to collect the requisite supplies, equipping size-appropriate drones with the right aid for rapid-fire delivery.
This brings us to a second critical convergence: robots and drones.
While cutting-edge drone technology revolutionizes the way we deliver aid, new breakthroughs in AI-geared robotics are paving the way for superhuman emergency responses in some of today’s most dangerous environments. 
Let’s explore a few of the most disruptive examples to reach the testing phase.
First up….

Autonomous Robots and Swarm Solutions

As hardware advancements converge with exploding AI capabilities, disaster relief robots are graduating from assistance roles to fully autonomous responders at a breakneck pace.
Born out of MIT’s Biomimetic Robotics Lab, the Cheetah III is but one of many robots that may form our first line of defense in everything from earthquake search-and-rescue missions to high-risk ops in dangerous radiation zones.
Now capable of running at 6.4 meters per second, Cheetah III can even leap up to a height of 60 centimeters, autonomously determining how to avoid obstacles and jump over hurdles as they arise.
MIT Cheetah III
Source: Massachusetts Institute of Technology (MIT) 
Initially designed to perform spectral inspection tasks in hazardous settings (think: nuclear plants or chemical factories), the Cheetah’s various iterations have focused on increasing its payload capacity, range of motion, and even a gripping function with enhanced dexterity.
But as explained by the Lab’s director and MIT Associate Professor Sangbae Kim, Cheetah III and future versions are aimed at saving lives in almost any environment: “Let’s say there’s a fire or high radiation, [whereby] nobody can even get in. [It’s in these circumstances that] we’re going to send a robot [to] check if people are inside. [...] [And even] before doing all that, the short-term goal will be sending [the] robot where we don’t want to send humans at all, [...] for example, toxic areas or [those with] mild radiation.”
And the Cheetah III is not alone.
Just this February, Tokyo’s Electric Power Company (TEPCO) has put one of its own robots to the test.
For the first time since Japan’s devastating 2011 tsunami, which led to three nuclear meltdowns in the nation’s Fukushima nuclear power plant, a robot has successfully examined the reactor’s fuel.
Broadcasting the process with its built-in camera, the robot was able to retrieve small chunks of radioactive fuel at five of the six test sites, offering tremendous promise for long-term plans to clean up the still-deadly interior.
Also out of Japan, Mitsubishi Heavy Industries (MHi) is even using robots to fight fires with full autonomy. In a remarkable new feat, MHi’s Water Cannon Bot can now put out blazes in difficult-to-access or highly dangerous fire sites.
Delivering foam or water at 4,000 liters per minute and 1 megapascal (MPa) of pressure, the Cannon Bot and its accompanying Hose Extension Bot even form part of a greater AI-geared system to conduct reconnaissance and surveillance on larger transport vehicles.
As wildfires grow ever more untamable, high-volume production of such bots could prove a true lifesaver. Paired with predictive AI forest fire mapping and autonomous hauling vehicles, not only will solutions like MHi’s Cannon Bot save numerous lives, but avoid population displacement and paralyzing damage to our natural environment before disaster has the chance to spread.
But even in cases where emergency shelter is needed, groundbreaking (literally) robotics solutions are fast to the rescue.
After multiple iterations by Fastbrick Robotics, the Hadrian X end-to-end bricklaying robot can now autonomously build a fully livable, 180-square meter home in under 3 days. Using a laser-guided robotic attachment, the all-in-one brick-loaded truck simply drives to a construction site and directs blocks through its robotic arm in accordance with a 3D model.
Hadrian Bricklaying Robot
Source: Fastbrick Robotics
Meeting verified building standards, Hadrian and similar solutions hold massive promise in the long-term, deployable across post-conflict refugee sites and regions recovering from natural catastrophes.
But what if we need to build emergency shelters from local soil at hand? Marking an extraordinary convergence between robotics and 3D printing, the Institute of Advanced Architecture of Catalonia (IAAC) is already working on a solution.
In a major feat for low-cost construction in remote zones, IAAC has found a way to convert almost any soil into a building material with three times the tensile strength of industrial clay. Offering myriad benefits, including natural insulation, low GHG emissions, fire protection, air circulation and thermal mediation, IAAC’s new 3D printed native soil can build houses on-site for as little as $1,000.
But while cutting edge robotics unlock extraordinary new frontiers for low-cost, large-scale emergency construction, novel hardware and computing breakthroughs are also enabling robotic scale at the other extreme of the spectrum.
Again, inspired by biological phenomena, robotics specialists across the U.S. have begun to pilot tiny robotic prototypes for locating trapped individuals and assessing infrastructural damage.
Take RoboBees, tiny Harvard-developed bots that use electrostatic adhesion to ‘perch’ on walls and even ceilings, evaluating structural damage in the aftermath of an earthquake. 
Or Carnegie Mellon’s prototyped Snakebot, capable of navigating through entry points that would otherwise be completely inaccessible to human responders. Driven by AI, the Snakebot can maneuver through even the most densely packed rubble to locate survivors, using cameras and microphones for communication.
But when it comes to fast-paced reconnaissance in inaccessible regions, miniature robot swarms have good company.

Next-Generation Drones for Instantaneous Relief Supplies

Particularly in the case of wildfires and conflict zones, autonomous drone technology is fundamentally revolutionizing the way we identify survivors in need and automate relief supply.
Not only are drones enabling high-resolution imagery for real-time mapping and damage assessment, but preliminary research shows that UAVs far outpace ground-based rescue teams in locating isolated survivors.
As presented by a team of electrical engineers from the University of Science and Technology of China, drones could even build out a mobile wireless broadband network in record time using a “drone-assisted multi-hop device-to-device” program.
And as shown during Houston’s Hurricane Harvey, drones can provide scores of predictive intel on everything from future flooding to damage estimates.
Among multiple others, a team led by Texas A&M computer science professor and director of the university’s Center for Robot-Assisted Search and Rescue Dr. Robin Murphy flew a total of 119 drone missions over the city, from small-scale quadcopters to military-grade unmanned planes. Not only were these critical for monitoring levee infrastructure, but also for identifying those left behind by human rescue teams.
But beyond surveillance, UAVs have begun to provide lifesaving supplies across some of the most remote regions of the globe.
One of the most inspiring examples to date is Zipline.
Created in 2014, Zipline has completed 12,352 life-saving drone deliveries to date. While drones are designed, tested and assembled in California, Zipline primarily operates in Rwanda and Tanzania, hiring local operators and providing over 11 million people with instant access to medical supplies.
Providing everything from vaccines and HIV medications to blood and IV tubes, Zipline’s drones far outpace ground-based supply transport, in many instances providing life-critical blood cells, plasma and platelets in under an hour.
Zipline Drones
Source: Zipline
But drone technology is even beginning to transcend the limited scale of medical supplies and food.
Now developing its drones under contracts with DARPA and the U.S. Marine Corps, Logistic Gliders, Inc. has built autonomously navigating drones capable of carrying 1,800 pounds of cargo over unprecedented long distances. 
Built from plywood, Logistic’s gliders are projected to cost as little as a few hundred dollars each, making them perfect candidates for high-volume, remote aid deliveries, whether navigated by a pilot or self-flown in accordance with real-time disaster zone mapping.
As hardware continues to advance, autonomous drone technology coupled with real-time mapping algorithms pose no end of abundant opportunities for aid supply, disaster monitoring, and richly layered intel previously unimaginable for humanitarian relief. 

Concluding Thoughts

Perhaps one of the most consequential and impactful applications of converging technologies is their transformation of disaster relief methods.
While AI-driven intel platforms crowdsource firsthand experiential data from those on the ground, mobile connectivity and drone-supplied networks are granting newfound narrative power to those most in need.
And as a wave of new hardware advancements gives rise to robotic responders, swarm technology and aerial drones, we are fast approaching an age of instantaneous and efficiently distributed responses, in the midst of conflict and natural catastrophes alike.
Empowered by these new tools, what might we create when everyone on the planet has the same access to relief supplies and immediate resources? In a new age of prevention and fast recovery, what futures can you envision?